
1. Introduction to File Handling

File handling in C language refers to the process of creating, opening, reading, writing, and closing
files using C programs.
Files are used to store data permanently on secondary storage devices such as hard disks.

Unlike variables, file data is not lost when the program ends.

Definition

File handling is a mechanism that allows programs to store and retrieve data from files.

2. Need for File Handling

File handling is required because:

 Variables store data temporarily
 Large data cannot be stored in memory
 Data needs to be reused later
 Permanent storage is required
 Data sharing between programs is needed

3. Types of Files in C

C language supports two types of files:

1. Text Files
2. Binary Files

3.1 Text Files

 Store data in character format
 Human readable
 Each line ends with newline character

Examples:

 .txt
 .c

3.2 Binary Files

 Store data in binary format
 Not human readable
 Faster and more secure

Examples:

 .dat
 .bin

4. File Pointer

To work with files, C uses a file pointer.

Definition

A file pointer is a pointer of type FILE used to identify a file.

Declaration
FILE *fp;

The FILE structure is defined in the stdio.h header file.

5. Opening a File

The fopen() function is used to open a file.

Syntax
fp = fopen("filename", "mode");

Example
fp = fopen("data.txt", "r");

6. File Opening Modes
Mode Description

r Read

w Write

a Append

r+ Read + Write

w+ Write + Read

a+ Append + Read

7. Closing a File

After file operations, the file must be closed.

Syntax
fclose(fp);

Closing a file:

 Saves data
 Frees memory
 Prevents data loss

8. Writing Data to a File

8.1 Using fprintf()

Writes formatted output to a file.

fprintf(fp, "Hello World");

8.2 Using fputc()

Writes a single character.

fputc('A', fp);

8.3 Using fputs()

Writes a string.

fputs("C Programming", fp);

9. Reading Data from a File

9.1 Using fscanf()

Reads formatted data.

fscanf(fp, "%s", str);

9.2 Using fgetc()

Reads a single character.

ch = fgetc(fp);

9.3 Using fgets()

Reads a string.

fgets(str, 50, fp);

10. Checking End of File (EOF)

The feof() function checks end of file.

Example
while(!feof(fp))
{
 ch = fgetc(fp);
 printf("%c", ch);
}

11. File Handling Program Example (Text File)
FILE *fp;
char str[50];

fp = fopen("test.txt", "w");
fputs("Welcome to C", fp);
fclose(fp);

fp = fopen("test.txt", "r");
fgets(str, 50, fp);
printf("%s", str);
fclose(fp);

12. Binary File Handling

Binary files store data in raw binary format.

12.1 Writing to Binary File (fwrite)
fwrite(&s, sizeof(s), 1, fp);

12.2 Reading from Binary File (fread)
fread(&s, sizeof(s), 1, fp);

13. Random Access in Files

Random access allows moving file pointer to any location.

13.1 fseek()
fseek(fp, offset, position);

Positions:

 SEEK_SET
 SEEK_CUR
 SEEK_END

13.2 ftell()

Returns current file pointer position.

pos = ftell(fp);

13.3 rewind()

Moves file pointer to beginning.

rewind(fp);

14. File Handling with Structures

Structures can be stored in files.

Example
struct Student
{
 int roll;
 char name[20];
};

Write:

fwrite(&s, sizeof(s), 1, fp);

Read:

fread(&s, sizeof(s), 1, fp);

15. Error Handling in Files

15.1 Checking File Open Error
if(fp == NULL)
{
 printf("File not found");
 exit(1);
}

15.2 perror() Function
perror("Error");

16. Advantages of File Handling

 Permanent data storage
 Handles large data
 Data sharing
 Backup and recovery
 Efficient memory usage

17. Limitations of File Handling

 Slower than memory operations
 Requires proper error handling
 File corruption risk
 Platform dependency (binary files)

18. Common Errors in File Handling

1. Forgetting to close file
2. Using wrong file mode
3. Reading from write-only file
4. Not checking NULL pointer
5. Incorrect use of EOF

19. Applications of File Handling

 Database systems
 Banking software
 Student record management

 Payroll systems
 File management utilities

20. Difference Between Text and Binary Files
Feature Text File Binary File

Readability Human readable Not readable

Speed Slow Fast

Size Larger Smaller

Data Characters Binary

21. Best Practices

 Always close files
 Check file open success
 Use binary files for structures
 Use text files for readable data
 Handle errors properly

22. Interview / Exam Important Points

 FILE is a structure
 File pointer is required
 fopen() opens a file
 fclose() closes a file
 Binary files use fread() & fwrite()

23. Conclusion

File handling is a crucial concept in C programming that allows permanent storage and retrieval of data.
Understanding file types, file modes, and file functions is essential for developing real-world applications
like databases, record management systems, and system software.

